
1. Introduction
The soils store most of Earth's terrestrial carbon, so the persistence of soil organic matter is critical for regulating 
land carbon feedback to climate change (Mathieu et al., 2015; Shi et al., 2020). Forests cover around 30% of the 
Earth's land area and provide the most significant natural carbon sink to sequester anthropogenic carbon dioxide 
(CO2) (Besnard et al., 2018; Bonan, 2016; Friedlingstein et al., 2022). As an essential characteristic of the persis-
tence of organic matter in forest soils, the mean turnover time of soil organic carbon (τsoc) quantifies the cycling 
rate of all carbon atoms leaving the soil at a specific time (Schmidt et al., 2011; Sierra et al., 2016). Over a broad 
biogeographic scale, the climate is often recognized as the primary factor regulating the spatial variation of τsoc. 
For example, strong negative relationships between τsoc and climate factors, that is, precipitation and tempera-
ture, have been detected in both observations (Hein et al., 2020; J. Wang et al., 2019) and Earth system models 
(Carvalhais et al., 2014; Koven et al., 2013). However, the increasing complexity of climate and the rapid change 
of ecosystems suggested that a single factor can no longer fully explain the spatial variation in τsoc (Van der Voort 
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et al., 2019). It remains unclear whether and how the biotic and abiotic factors contribute to the spatial variation 
of τsoc across forest ecosystems on a regional or global scale.

Besides climate, soil properties and vegetation development contribute to soil carbon persistence on a global scale 
(Heckman et al., 2022; Herold et al., 2014; Shi et al., 2020). Soil properties could determine τsoc by protecting 
organic matters within aggregates (Torn et al., 1997) or forming chemical associations with minerals (Doetterl 
et al., 2018). Therefore, either a negative or positive relationship has been observed between τsoc and clay content 
(Angst et al., 2019; Müller & Höper, 2004), metal-oxides (Doetterl et al., 2015; Khomo et al., 2017), or soil 
density fractions (Heckman et al., 2022; Trumbore, 1997). Furthermore, all the soil properties mentioned above 
vary along soil depth (Luo et al., 2019; M. Wang et al., 2022). Compared with the surface layer, soils in the deep 
layer have older carbon (Shi et al., 2020) and a higher potential for carbon persistence (Trumbore, 2009), with 
lag in response to climate change (L. Chen et al., 2021). Those observations showed that the dynamic changes 
of deep soil organic carbon would exhibit different responses compared with surface soil, and its accumulation 
process may be driven by more specific processes (Kaiser & Guggenberger, 2003; Lützow et al., 2006). Thus, 
global synthesized evidence suggests that soil depth is an essential predictor of carbon persistence (Heckman 
et al., 2022; Mathieu et al., 2015). Meanwhile, the changes in aboveground carbon inputs could affect the τsoc as 
a consequence of the evolution of the forest ecosystem (Ge et al., 2022; Quideau et al., 2001). For example, more 
fresh carbon inputs from plants and litter can shorten τsoc by stimulating the decomposition rate of soil organic 
matter (i.e., priming effect; Fontaine et al., 2007). The large global variation in forest age (Curtis & Gough, 2018; 
McDowell et al., 2020; Poulter et al., 2019) could affect τsoc through changes in plant biomass allocation and litter 
quality. Sustainable canopy productivity in mature forests has been supported by many direct measurements of 
forest net CO2 exchange (Besnard et al., 2018). However, how the carbon cycling rate in soils changes with the 
developmental stage of vegetation is unclear.

Many studies have emphasized the importance of interactive effects between multiple factors on τsoc. Under 
continuous changes in aboveground processes, the spatial variation of forest stand age could be a crucial contrib-
utor to the biogeographic distribution of τsoc, especially when combined with soil depth. First, forest aging can 
promote the growth of fine roots in deep soils (Germon et al., 2020), leading to spatial variations in the vertical 
distribution of fine root traits (Carmona et al., 2021). For example, in-situ observations along forest or soil chron-
osequence have shown that old forests usually have high fine root fraction (Børja et al., 2008) and specific root 
length (Holdaway et al., 2011) compared to younger forests. Second, stand age directly influences forest produc-
tivity and the carbon allocation among plant organs (X. Chen et al., 2023; Zhu & Xia, 2020), indirectly affecting 
τsoc by altering the time characteristics of litter carbon inputs. Third, the coupling strength of different chemical 
elements also depends on soil depth (Qiao et al., 2020). Recent evidence has shown that the physically or chemi-
cally formed mineral-organic associations are critical in controlling the spatial variation of subsoil carbon persis-
tence on regional and global scales (C. Chen et al., 2020). Therefore, some Earth system models have recently 
incorporated dynamics of forest stand age (Nabel et al., 2020) and multiple soil layers (Dai et al., 2019; Koven 
et al., 2013) to improve the predictions of terrestrial carbon cycling. However, how forest age, soil depth, and their 
interactive effect with climate contribute to the variation of τsoc over the geographic scale remains not quantified.

Radiocarbon is a powerful proxy to evaluate carbon persistence on long-term timescales (Trumbore, 2009). In 
this study, we first compiled a global database of radiocarbon-based estimates of τsoc, consisting of 1897 soil 
samples from 245 forest locations. Then, we sampled soils and measured the radiocarbon signals in 12 permanent 
forest plots in five mountains across the Eastern Asia monsoon region (20–40°N, 100–145°E, Figure 1 and Figure 
S1 in Supporting Information S1). The stand ages of the 12 permanent forest plots ranged from 25 to 200 years 
(Table 1). We also measured soil physical and chemical properties at different depths and biological factors such 
as litter mass and fine-root biomass. Overall, this study aims to answer two specific questions: (a) How does τsoc 
vary across forest ecosystems at the geographic scale, and (b) Which biotic and abiotic factors regulate the spatial 
variation of τsoc in forests?

2. Materials and Method
2.1. Soil Sampling in Forests Across the Eastern Asian Monsoon Region

We sampled soils from 12 permanent forest plots in five mountains in the Eastern Asian Monsoon region 
(Table 1, Figure 1 and Figure S1 in Supporting Information S1). Five of the 12 forest plots are members of the 
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Smithsonian Forest Global Earth Observatory network (ForestGEO, https://forestgeo.si.edu/; Anderson-Teixeira 
et al., 2018; Chu et al., 2019). The other seven forest plots are members of China's National Ecosystem Research 
Network (CNERN, http://www.cern.ac.cn). In the Eastern Asian Monsoon region, more than half of the total 

Figure 1. Global map showing the location of forest soil organic carbon (SOC) turnover time (τsoc) based on radiocarbon 
worldwide. The filled dots in this map indicated published SOC turnover time (τsoc) based on the radiocarbon method 
(n = 1,897, 1,873 from literature, and 24 from this study), and the time period of those data ranged from 1958 to 2017. The 
pie charts in this map indicate the sampling sites along with eastern China. The pie charts with different parts indicated the 
plots with corresponding different forest ages. The plant functional type is based on the MCD12C1 product classification 
(Friedl & Sulla-Menashe, 2022).

Sampling mountains Location Plot Stand age (year) Parent materials
Soil taxonomy 

(USDA) MAT (°C) MAP (mm) PFT

Changbai Mount 
(CB), Jilin

42.47°N, 
128.08°E

Plot 1 200 Basalt and granite Alfisol 3.3 671 Temperate 
conifer 
broad-leaved 
mixed forest

Plot 2 80

Dongling Mount 
(DL), Beijing

40.01°N, 
115.45°E

Plot 3 54 Sand shale, granite Inceptisols 4.9 570 Warm temperate 
deciduous 
forest

Plot 4 89

Plot 5 107

Tiantong Mount 
(TT), Zhejiang

29.48°N, 
121.47°E

Plot 6 25 Quartzite and granite Alfisols 16.2 1,375 Subtropical 
mixed broad-
leaved forest

Plot 7 55

Plot 8 120

Badagongshan 
Mount (BDG), 
Hunan

29.65°N, 
110.16°E

Plot 9 50 Slate shale, fine 
sandstone, siltstone, 
and siliceous rock

Hapludalfs 11.5 2,105 Subtropical 
mixed 
evergreen 
broad-leaved 
forest

Plot 10 80

Plot 11 100

Heishiding Mount 
(HSD), 
Guangdong

23.86°N, 
111.81°E

Plot 12 116 Granite, limestone, and 
quaternary red clay

Oxisols 19.6 1,744 Subtropical 
monsoon 
evergreen 
broad-leaved 
forest

Note. MAT, mean annual temperature; MAP, mean annual precipitation; PFT, plant functional type. Soil taxonomy is classified according to the United States soil 
taxonomy series (USDA, 1996).

Table 1 
Location and Basic Information Along the North-South Transect of East China
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annual rainfall occurs in the summer (i.e., June, July, and August) (Tardif et al., 2020; Tian et al., 2003). The soil 
in site Changbai Mount (CB) is classified as dark brown forest soil (Alfisol, according to the US Soil Taxon-
omy Series, 1999). The parent materials mainly include granite and basalt. The soil formation process is mainly 
characterized by weak acid leaching and the humus accumulation process in the temperate humid forest (Zhao 
et al., 2019). The soil in site Dongling Mount (DL) is classified as brown forest soil (Inceptisols). The major pedo-
genic process is composed of weathering of sand shale and granite (Fu et al., 2004). The soil in Tiantong Mount 
(TT) is classified as mountainous yellow and red soil (Alfisols). The substrate of parental material is composed 
of Mesozoic sediments and acidic intrusive rocks, including quartzite and granite (Yan et al., 2009). The soil in 
site Badagongshan Mount (BDG) is classified as mountain yellow-brown soil (Hapludalfs) and developed mainly 
from slate shale, fine sandstone, siltstone, and siliceous rock with a thin mineral A horizon (about 10 cm). The 
major pedogenic processes are characterized by leaching, clay accumulation, and litter deposition (Li, 2016; Li 
et al., 2017). The soil in site Heishiding Mount (HSD) is classified as red soil (Oxisols). The parent material is 
sand shale, limestone, and a small portion of Quaternary red clay (He, 2016).

We estimated the τsoc by the radiocarbon dating analysis of up to 100 cm of soil depth in each forest plot. For 
each plot, we separated the whole soil increment into the surface (0–30 cm) and deep (30–100 cm) layers to 
test the radiocarbon signal due to the high financial cost. Details of the location, climate, and vegetation for 
each sampling site are provided in Table  1, Table S1, and Text S1 in Supporting Information  S1. Nine soil 
cores (2.5 cm in diameter) were collected in each forest plot, and each soil column was separated by a depth of 
10 cm from 0 to 100 cm. In total, 108 soil profiles were sampled across the 12 forest plots. The accumulated 
aboveground litter was collected and measured in an area of 50 × 50 cm in each forest plot, with three replicates 
adjacent to each soil profile. Fine roots (<2 mm in diameter) were collected by sequential soil cores and manually 
picked from soil samples. Twelve soil cores were collected randomly in a plot using a soil auger (with an inner 
diameter of 5 cm and a length of 100 cm). The fine roots were gently picked up with tweezers after being washed 
off the soil. The fine root biomass of each layer in a plot was averaged by the 12 samplings. The fine root biomass 
of whole profiles in each sampling plot was added by all depths. The litter and root samples were dried at 65°C 
for 48 hr using an oven and then weighed for dry mass. The elevation and other geographic information of each 
forest plot were measured during the soil sampling (Tables S2–S6 in Supporting Information S1).

The soil samples were air-dried in the laboratory and then sieved to 0.15 mm to analyze the contents of soil 
organic carbon, nitrogen, and phosphorus. Stones and fine roots were separated and weighed before the chemical 
analyses. The content of soil organic carbon (SOC, g · kg −1) was measured by dichromate heating-oxidation (Liu 
et al., 1996). Total nitrogen concentration (TN, g · kg −1) was determined using the modified Kjeldahl method 
(Keeney & Page,  1982). Total phosphorus concentration (TP, g  ·  kg −1) was determined by the molybdenum 
blue colorimetric method (Murphy & Riley, 1962). The C:N, C:P, and N:P were calculated by the ratio of SOC, 
TN, and TP, respectively. Soil pH was measured by a pH meter with a soil: water ratio of 1:2.5. The soil cation 
exchange capacity (CEC) was measured by summing the exchangeable cations, consisting of base and acid cati-
ons. The base cations include calcium (Ca 2+), magnesium (Mg 2+), potassium (K 2+), and sodium (Na 2+), and the 
acid cations include hydrogen (H +), aluminum (Al 2+), and ammonium (𝐴𝐴 NH

+

4
 ). The details of climate and other 

site information can be found in Text S1 and Table S8 in Supporting Information S1. To explore the effects of Al/
Fe minerals on τsoc, we analyzed total Fe2O3 and Al2O3 in the bulk soil using inductively coupled plasma atomic 
emission spectroscopy (ICP–AES; Agilent 7500a, USA). Specifically, the soil sieved to 0.15 mm and weighted 
0.1 g was fused with 0.7 g lithium metaborate at 1,000°C for 15 min. After cooling, the sample was added to 
60 mL 10% HNO3 with continuous stirring until completely dissolved. The sample solution was diluted with 5% 
HNO3 into 100 mL prior to further ICP-AES analysis (Liu et al., 1996). The analytical precision is ±5% for total 
Fe2O3 and Al2O3. The data set of climatic and site information is also provided by the National Ecosystem Science 
Data Center, National Science & Technology Infrastructure of China (http://www.nesdc.org.cn).

2.2. Global Database of Radiocarbon-Based τsoc

Global soil radiocarbon data was analyzed using the International Soil Radiocarbon Database (ISRaD v.1.0; 
Lawrence et  al.,  2020). ISRaD is an open-source data with the records of 8 biomes (i.e., forest, grassland, 
cropland, shrubland, savanna, tundra, permafrost, and others). Since we focus on the turnover time of SOC (τsoc) 
based on radiocarbon occurring in the natural forest ecosystem, so we limited our study to data from soil depth 
within 200 cm in the forest ecosystem. Radiocarbon is reported in units Δ 14C in this study and normalized to 
the year 2000 (Shi et al., 2020). The positive value of Δ 14C indicated the disturbance by nuclear weapons testing 
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during the 1950s and 1960s, while the negative value of Δ 14C indicated that carbon was less affected by nuclear 
weapons testing. The ISRaD database also collected climatic variables (mean annual temperature, precipitation), 
soil properties (soil depth, organic carbon content, and clay content), and land cover type. When the information 
is missing, we collect it from other open databases.

Overall, we combined a database of radiocarbon-based τsoc of 1897 soil samples from 245 forest locations worldwide 
(Figure 1). It covers a wide geographical range (35.65°S‒68.80°N; 159.64°W–173.57°E) and a broad nature climate 
zone (−12.25 to 27.70°C; 88–6,910 mm) over the half a century (1958–2017). The soil depth was calculated at the 
midpoint between the top and deep layers of each depth increment. For those works of literature with no description 
of the site-level climate, we extracted the 30-year average value of (1970–2000) the mean annual temperature (MAT) 
and precipitation (MAP) from the WorldClim open data sets (http://www.worldclim.org/) based on their geographi-
cal information. Where forest age is missing, we derived it from the global forest age data set (GFAD v 1.0; Poulter 
et al., 2019). The GFAD database represents the distribution of forest stand age during 2000–2010 years.

2.3.  14C Measurement of Soil Samples

Radiocarbon of bulk soil samples was measured by the accelerator mass spectrometry (AMS) at the State Key 
laboratory of organic geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, China. 
Soil samples for radiocarbon analyses were taken with a depth interval of 10 cm along with the soil profiles. 
We applied the least significant difference (LSD) test to compare differences in SOC turnover time (τsoc) among 
different soil depth intervals. The LSD test showed that the topsoil (0–30 cm) had significantly lower τsoc than the 
subsoil (30–100 cm) (Figure 3b). Thus, we separate two soil increments for radiocarbon dating at each site due to 
the high financial cost. Two depths (surface layer: 0–30 cm and deep layer: 30–100 cm) were chosen for subsequent 
analyses and combined accordingly. The soil samples for radiocarbon dating were pre-treated with acid (soaked in 
0.1 m HCl for 10 hr) to remove carbonate. The soil samples were washed free of mineral acid with distilled water, 
dried, and homogenized. It is noted that using acid hydrolysis to remove carbonate in soil samples would create 
uncertainty in estimating τsoc because of losing soluble organic carbon, which has a lower τsoc (Paul et al., 2001).

The results of the radiocarbon concentrations are given as fraction modern F and Δ 14C, including blank correction 
and normalization for isotopic to δ 13CPDB‰ = −25‰ (Schuur et al., 2016; Stuiver & Polach, 1977; Torn et al., 2009):

𝐹𝐹 =
𝐴𝐴SN

𝐴𝐴ON

=

(

14C

12C+13C

)

sample(−25)

0.95 ×
(

14C

12C+13C

)

standard(−19)

 (1)

where the ASN and AON are  13C-corrected sample activity and 0.95 times the measured activity of standard normal-
ized to a δ 13C of −19‰ (Stuiver & Polach, 1977).

2.4. Radiocarbon-Based Estimation of τsoc at the Site Level

In this study, we assume that the soil carbon pool is a well-mixed system with steady-state and atmospheric 
carbon dioxide as the carbon input (I). To determine the mean SOC turnover time (τsoc), we used a time-dependent 
model (Gaudinski et al., 2000; Torn et al., 2009) as described by Equation 2. This model is based on several 
assumptions: (a) the soil carbon pool is homogenous; (b) the rates of carbon input are equal to the output; (c) the 
time lag between photosynthetic fixation and new carbon input to the soil carbon pool is less than 1 year; and (d) 
all carbon atoms in the carbon pool have the equal probability of leaving that pool. It is worth noting that the mean 
SOC turnover time (τsoc) was equal to the residence time under steady-state (Sierra et al., 2016).

𝐹𝐹
′
𝐶𝐶𝐶𝐶𝐶

× 𝐶𝐶𝐶𝐶 = 𝐼𝐼 × 𝐹𝐹
′
atm𝐶𝐶𝐶

− 𝐶𝐶𝐶𝐶−1 × 𝐹𝐹
′
𝐶𝐶𝐶𝐶𝐶

× (1 − 𝑘𝑘 − 𝜆𝜆) (2)

where I represents the carbon inputs in a given carbon pool. Ct and Ct−1 are the carbon content in years t and t − 1, 
respectively. k is the decomposition rate of SOC. λ is the half-life decay (λ = 1.21 × 10 −4 year −1). At steady state, 
Ct−1 = Ct = I/k, and Equation 2 could be further rewritten to:

𝐹𝐹
′
𝐶𝐶𝐶𝐶𝐶

= 𝑘𝑘 × 𝐹𝐹
′
atm𝐶𝐶𝐶

+ 𝐹𝐹
′
𝐶𝐶𝐶𝐶𝐶−1

× (1 − 𝑘𝑘 − 𝜆𝜆) (3)

where 𝐴𝐴 𝐴𝐴
′
𝐶𝐶𝐶𝐶𝐶

 , and 𝐴𝐴 𝐴𝐴
′
𝐶𝐶𝐶𝐶𝐶−1

 are represented by the absolute fraction modern of the soil sample in year t and t − 1, respec-
tively (𝐴𝐴 𝐴𝐴

′
𝐶𝐶𝐶𝐶𝐶

  = Δ 14C/1,000 + 1). 𝐴𝐴 𝐴𝐴
′
atm,𝑡𝑡

 is the absolute fraction modern for the atmosphere carbon fixed in year t. The 
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atmospheric radiocarbon curve of the bomb-spike period (1950–2010) was obtained from Northern Hemisphere 
Zone 1 by Hammer and Levin (2017) and Hua et al. (2013).

The τsoc can be calculated as the inverse of the decomposition rate, that is, τsoc = 1/k (Torn et al., 2009). The numer-
ical optimization of k was resolved with the function “turnoverfit” by the SoilR package (Sierra et al., 2014). 
When the bomb-derived radiocarbon yields two possible k, we identified the right value based on the information 
on the plant litterfall and the carbon stock (Gaudinski et al., 2000). We used the smaller k (i.e., longer τsoc) when 
litterfall or carbon stock information was missing.

2.5. Statistical Analyses

The Shapiro-Wilk normality test (Royston, 1992) was used to test the normality of τsoc and other environmental 
factors before further analyses. We used the one-way analysis of variance (ANOVA) to examine the statistical 
significance of τsoc in two soil layers. A P-value of <0.05 was considered statistically significant. We measured 
vegetation, climatic, soil chemical, and soil physical properties to analyze the impacts of biotic and abiotic factors 
on τsoc. The relationship between τsoc and dependent variables was tested by Pearson's correlation and the Partial 
Mantel test (Mantel, 1967). The Partial Mantel tests were conducted by the function “fortify_mantel” within the 
“ggcor” and “vegan” packages in the software R. The statistical analysis to determine the dependent variables 
of τsoc was performed on the two soil layers (i.e., 0–30 cm, 30–100 cm) separately. The generalized linear model 
(GLM) was used to identify the relationship between stand age, soil depth, and τsoc (Nelder & Wedderburn, 1972). 
The importance value of a given predictor is based on the sum of Akaike's weight. All statistical analyses and 
graphs were performed using the R software (Version 3.5.2, R Development Core Team, 2019). The maps of 
forest types worldwide and in Eastern China were conducted using ArcGIS software (Version 10.4.1, Envi-
ronmental System Research Institute, USA, 2016). Structural equation modeling (SEM; Schermelleh-Engel 
et al., 2003) was used to evaluate the positive and negative relationships between climate, biomass production, 
SOC stoichiometry, chemical properties, and physical properties on τsoc. The fit of the optimization model was 
evaluated using the Chi-square test, and the root means squared error (RMSE). The structural equation modeling 
analyses were conducted using Amos 21 (Amos Development Corporation, Chicago, USA).

3. Results
3.1. Spatial Variations of τsoc

We found that the mean turnover time of bulk soil (τsoc) in the deep layer (>30 cm) was significantly higher than the 
surface layer (0–30 cm) both at regional and global scales (Figure 2). Across the 12 permanent forest plots in the 
Eastern Asian Monsoon region, the mean τsoc of bulk soil was 249 ± 80 years on the surface, which was significantly 
shorter than the deep layer of 2,087 ± 246 years across the 12 forest plots (Figure 2b, P = 0.02). We also observed a 
large spatial variation of τsoc. Specifically, for the surface layer, the τsoc ranged from 116 years at site BDG to 421 years 
at site TT with a variation of 54% (Figure 2). The τsoc is characterized by a wide range from 130 years at the site 
of BDG to 7,508 years at the site CB in the deep layer, with a variance of 133% (Figure S2 in Supporting Informa-
tion S1). The higher soil Δ 14C was observed in the surface layer with a mean value of −0.62 ± 52.89‰, while the 
deeper layer was more depleted with a mean value of −191.42 ± 138.63‰ (Figure S2 in Supporting Information S1).

On the global scale, the mean τsoc was 332 ± 56 years on the surface and 3,081 ± 398 years in deep layers 
(Figure 2). Multiple comparisons and analyses of variance (one-way ANOVA with a least significant difference, 
LSD test) were used to test the vertical distribution of τsoc at the global scale. An increasingly τsoc with soil depth 
was found at the global scale (Figure 2 and Figure S2 in Supporting Information S1). Positive Δ 14C value occurred 
at the upper 30 cm, representing a SOC pool with the input of atmospheric bomb  14C (Figure S2 in Supporting 
Information S1). The deeper layer was characterized by negative values ranging from −84.25‰ at a soil depth of 
40 cm to −284.43‰ at a soil depth of 150 cm (Figure S2 in Supporting Information S1). The results of the LSD 
test demonstrated that the mean τsoc at deep soil layers (>30 cm) was significantly larger than at surface layers 
(0–30 cm) at both global and regional scales (Figure 2 and Figure S2 in Supporting Information S1).

3.2. Biotic and Abiotic Factors Driving the Geographic Relationship

The stand age ranged from 25 to 200 years across the 12 permanent forest plots in the East Asian monsoon region 
(Figure S1 in Supporting Information S1). The total tree basal area at the breast height ranged from 17.52 ± 4.89 to 
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40.18 ± 9.61 m 2 ha −1, with an increasing trend with stand age (Figure S3a in Supporting Information S1). The mean 
litter and fine root biomass were 5.59 ± 1.93 Mg ha −1 and 82.61 ± 76.13 g cm −2, with no significant trend at the 
spatial scale (P = 0.82, Figure S3 and Table S7 in Supporting Information S1). Across the 12 permanent forest plots, 
the fine root biomass was 1.22-fold in the surface layer than in the deep layer (Figure 3). Soil stoichiometry of the 
surface layer is 2.57 times for C:P, 1.80 times for N:P, and 1.43 times for C: N in the deep layers (Figure 3 and Table 
S2 in Supporting Information S1). In contrast, clay content, bulk density, and Fe2O3 were accumulated in deep layers 
than the surface layer (Figure 3 and Table S2 in Supporting Information S1). Specifically, the clay content was lower 
in the surface layer (19.99 ± 4.30%) than in the deep layer (23.56 ± 6.43%; Figure S3 in Supporting Information S1). 

Bulk density in the surface layer (1.08 g/cm −2) was slightly lower than the deep 
layer (1.26 g/cm −2, Figure 3 and Figure S3 in Supporting Information S1). The 
Fe2O3 in surface layers (4.25 ± 0.80%) was lower in deep layers (4.76 ± 0.65%; 
Figure 3). The CEC in the surface layer was 1.83-fold higher than in the deep 
layer (Figure  3). pH value slightly varied with soil depth (5.53  ±  0.75 and 
5.44 ± 1.00 for surface and deep layers, respectively; Figure 3).

Results of the Partial Mantel test suggested that CEC (R 2 = 0.61, P = 0.02) 
was the significant factor controlling the spatial variation of mean τsoc in the 
surface soil layer (Figure 4). In the deep soil layer, the variation of τsoc was 
significantly influenced by Fe2O3 content (R 2 = 0.43, P = 0.006) and stand 
age (R 2 = 0.38, P = 0.02). A negative relationship existed between SOC and 
τsoc at the whole soil profiles (y = 1841e −0.02x, R 2 = 0.25, P = 0.01; Figure S4 
in Supporting Information S1). However, we did not detect any significant 
negative relationship between SOC and τsoc when separating the data into two 
soil increments (Figure S4 and Table S8 in Supporting Information S1). To 
examine how biotic and abiotic factors regulated the τsoc at two soil depths, 
we constructed a SEM based on the possible dominant drivers (Figure 5). 
The SEM explained 36% (χ 2  =  5.72, P  =  0.17, RMSE  =  0.32) and 41% 
(χ 2 = 0.17, P = 0.68, RMSE = 0.00) of the spatial variance in τsoc in the 
surface and deep layers, respectively (Figure 6). For surface layers, the pH 
and CEC negatively affected τsoc (P = 0.02; Figure 6a). For the deep layers, 
total Fe2O3 (R 2 = 0.44, P < 0.01) and pH (R 2 = 0.63, P < 0.001) exerted a 
positive direct effect on τsoc (Figure 5b). Moreover, the vegetation dynamics 
indirectly affected τsoc by mediating total Fe2O3 at deep layers (R 2 = 0.44, 

Figure 2. Distribution of soil organic carbon (SOC) turnover time (τsoc) at two soil depths in all data (a, n = 1,897), regional 
analysis (b, n = 24), and global synthesis (c, n = 1,873). The red and blue shades indicated the density distribution of 1,897 
pieces of all data in panel (a). The boxplot indicated the 25th, 50th, and 75th data in all panels. The solid line and diamond 
shape in the boxplot represented the median and mean values.

Figure 3. The change of soil properties at two soil depths. Radar plots show 
the change in chemical processes, physical processes, and root biomass at 
two depths. The chemical processes include CEC (cation exchange capacity 
in the soil, exchangeable cations per unit weight in dry soil, cmol kg −1), total 
Fe2O3 in soil, and pH. The physical processes include clay content and bulk 
density. Soil properties conclude C:N (the ratio of soil organic carbon [SOC] 
and total nitrogen content), C:P (the ratio of SOC and total phosphors content), 
and N:P (the ratio of total phosphorus and total nitrogen content). It should be 
noted that the data presented here were the ratio of variables at the surface and 
deep. For example, the surface soil pH = surface pH/deep pH, and vice versa.
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P < 0.01, Figure 5b). The clay content also showed the influence of spatial variation of τsoc. The climatological 
factor indirectly affected τsoc by regulating the soil stoichiometric, physical, and chemical properties (Figure 5).

The stand age involved in the global data set ranged from 5 to 400  years with a mean stand age of 
89.65 ± 77.318 years, while the soil depth ranged from 0 to 150 cm with a mean value of 33.65 ± 32.01 cm 
(Figure S6 in Supporting Information S1). All the sampling sites in this study fell into the range of MAT from 
−12.25 to 27.70°C and MAP from 88 to 6,910 mm (Figure S7 in Supporting Information S1). By placing the 
global data of mean τsoc on the Whittaker climate-biome matrix (Whittaker, 1962), we exhibited the combined 
effect of climatic factors, stand ages, soil depth, and their interactions on τsoc (Figure 6). The results of the multi-
ple regression analysis showed that the fitted model explained 48% of the variability in mean τsoc at the global 
scale (Figure 6, P = 0.03). The climatic and stand age accounted for 1.58% and 1.38% of the variability on global 
τsoc, respectively. Soil depth accounted for 11.47% of the variance in global τsoc (Figure 6). Interactions between 
climatic factors, stand age, and soil depth account for 68.62% of the spatial variability in τsoc.

4. Discussion
The mean τsoc is significantly longer in the soil layer below 30 cm than in the topsoil at the regional and global 
scale, consistent with recent reports (Mathieu et al., 2015; Shi et al., 2020). The geographic variation of τsoc is 
regulated by the interactive effects of climate, vegetation, and soil properties, with a different mechanism at two 
soil layers.

Figure 4. Mantel tests and Pearson's correlation matrix illustrate the relationships between site-based τsoc and dependent 
variables across eastern China. Mantel tests quantified the correlation between τsoc and dependent variables at two soil layers 
(surface and deep). The line width corresponds to the Partial Mantel's r statistic for the corresponding correlation, and the line 
color indicates statistical significance. Color in orange, green, purple, and gray are denoted the significant level of <0.001, 
<0.01, <0.05, and >0.05, respectively. Pearson's correlation coefficient matrix shows the relationships among dependent 
variables. Red and blue represent the negative and positive correlations. The significant levels of Pearson's correlation 
among dependent variables were indicated by square size. The climate drivers conclude the mean annual temperature (MAT) 
and mean annual precipitation (MAP, mm). The variables of vegetation conclude stand age (SA, year), litter (aboveground 
accumulated litter biomass, Mg ha −1 year −1), and root (fine root biomass, g cm −2). The soil properties conclude C:N (the ratio 
of soil organic carbon [SOC] and total nitrogen content), C:P (the ratio of SOC and total phosphors content), N:P (the ratio 
of total phosphorus and total nitrogen content), bulk density (BD, g/cm 3), clay (clay fraction %), cation exchange capacity 
([CEC] in the soil, the amount of exchangeable cations per unit weight dry soil, cmol kg −1), total Fe2O3 (%) and Al2O3 (%) in 
soil, pH, and total exchangeable bases (TEB, cmol kg −1). Other property included Ele (Elevation, m).
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Figure 5. Direct and indirect effects of biotic and abiotic variables on the soil organic carbon (SOC) turnover times (τsoc) at 
two soil depths. Black solid arrows indicate significant relationships, respectively. Gray dash arrows indicate an insignificant 
relationship. Numbers at solid arrows (P < 0.05) were standardized path coefficients, and the width of the arrows indicated 
the strength of the relationships. The gray arrows indicated nonsignificant relationships (P > 0.05). Numbers close to 
variables (R 2) indicated the variance explained by the pathway analysis.
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Cation-exchange capacity measures soil fertility and represents the maximum of the total exchangeable cations 
in the soil at a given pH value. A negative relationship between CEC and τsoc has been reported for multiple 
potential reasons (Solly et  al.,  2020; Z. Yu et  al.,  2020). Some site studies have provided evidence that the 
changes in forest development affected the CEC (Gruba & Mulder, 2015) and further manipulated τsoc (Lawrence 
et al., 2015). Caused by the high rates of soil weathering and acidification (Jiang et al., 2018), a lower value  of 
CEC can be found in older forests in previous studies (Gilliam et  al.,  1995; Pincus et  al.,  2017). This study 
found a decrease in cation exchange capacity and pH decreases with stand age, resulting in a longer τsoc in the 
surface soil layer (Figure 5; Figure S5 in Supporting Information S1). The hydrolysis by weathering removes 
labile, rapidly cycling carbon, leaving behind slower cycling carbon in soil (Clift et al., 2014; Jiang et al., 2018; 
Solly et al., 2020; Trumbore & Zheng, 1996). With a higher level of CEC in rich SOC conditions, the nega-
tive relationship between SOC and τsoc in our study further supported this underlying mechanism (Figure S4b 
in Supporting Information  S1; Lawrence et  al.,  2015; Paul et  al.,  2001). Furthermore, reducing soil nutrient 
availability with forest aging indirectly can enhance the carbon persistence in the forest ecosystem (Posada & 
Schuur, 2011; Van der Voort et al., 2016). The decrease in CEC would impede the substitution of ammonium in 
the topsoil (Sollins et al., 1988), reducing N:P ratios in the surface layers associated with forest aging (Figure S3f 
in Supporting Information S1). A lower mean value of N:P in the older forest than in the younger forest (Figure 
S3 in Supporting Information S1) is likely due to the higher reduction in soil phosphorus content than nitrogen 
content. Previous studies have shown that physical protection by clay is one of the active processes that persist 
in soil organic carbon (Torn et al., 2009; Van der Voort et al., 2019). This study found a negative relationship 
between clay fraction and τsoc (Figure S5 in Supporting Information S1). Although the correlation between clay 
content and τsoc was observed, a small spatial variation of clay content in our study may not be sufficient to 
explain the effects on surface τsoc, especially under forest aging. These results highlight that soil geochemical 
processes with stand age change could be more important than physical protection in driving the surface soil τsoc 
variation in the East Asian monsoon region.

Figure 6. Distribution of soil organic carbon (SOC) turnover time (τsoc) and forest aging under different climate zones 
(N = 1,897). The solid point with different color bars represents the stand age at forest regional under 1° × 1° grid cells. The 
empty red point indicates the value τsoc. The relative contribution of stand age, soil depth, and climatic variables on τsoc was 
tested by the general linear regression model.

 21698961, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007438 by E
ast C

hina N
orm

al U
niversity, W

iley O
nline L

ibrary on [18/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Biogeosciences

WANG ET AL.

10.1029/2023JG007438

11 of 15

A different interaction between soil factors and vegetation on τsoc variation has been found in the deep layers 
(Figure  5). Mineral protection consisting of total Fe2O3 content interacting with soil organic carbon to form 
stable organic minerals is the critical mechanism for carbon persistence in the long term (Kleber et al., 2005). Our 
results showed that total Fe2O3 content and its covariance with pH and stand age are the main factors regulating 
τsoc at deep layers (Figure S5 in Supporting Information S1). The mineral particles with total Fe2O3 can protect the 
soil organic matter from microbial decomposition in acidic soils (Colombo et al., 2014). Soil acidification along 
forest aging gradients, indicated by the decreased pH, further leads to more accumulation of total Fe2O3 content 
and slow carbon cycling rates (Figure S3 in Supporting Information S1). Soil total Fe2O3 is often used as one of 
the most stable and objective indicators to describe soil development and classification (Hong et al., 2010; M. Yu 
et al., 2019). Notably, the total Fe2O3 content measured in this study includes iron from secondary mineral phases 
(Fe oxyhydroxides) and primary minerals that have not undergone weathering. Thus, some portion of the Fe is 
locked in the primary mineral structures and not interacting with organic matter. Additionally, the stoichiometry 
of soil carbon, nitrogen, and phosphorus also affected τsoc through a combined effect of stand age and climate 
in the deep layer (Figure 5). These findings emphasize that mineral protection could be a critical mechanism to 
explain the positive correlation between forest stand age and subsoil τsoc in the East Asian monsoon region.

Although paleoclimate evidence has revealed a negative role of climate change in τsoc in the low-latitude monsoon 
forests (Hein et al., 2020), our study did not find a significant correlation between τsoc and mean annual temperate 
or mean annual precipitation at the regional and global scales (Figure S7 in Supporting Information S1). However, 
significant correlations were detected between the climatic factors and total Fe2O3 content, soil pH, and soil stoi-
chiometry (Figure 4, Pearson's correlation matrix) at the regional scale. It indicated the indirect effects of climatic 
factors on τsoc by changing soil chemical properties, particularly significant in the deep layer (Figure 5). Consistent 
with regional results, the variation partitions analysis showed that climatic factors account for a few proportions of 
the variance in global τsoc (1.58%). In contrast, its interaction with stand age and soil depth can account for 68.62%. 
These results imply (Figure 6). These results imply the co-influence of climate, stand age, and soil depth on the 
spatial variation of τsoc (Figure 6). This study examined the available factors widely proposed in previous studies, 
such as climatic factors (He et al., 2016; Shi et al., 2020) or soil properties (Heckman et al., 2022). Meanwhile, we 
encounter a prevalent challenge of the weak correlation between τsoc derived from radiocarbon and other factors 
at the regional and global scale (Herold et al., 2014; Khomo et al., 2017). This weak correlation is possibly due 
to the high heterogeneity of SOC and variability of τsoc (Van der Voort et al., 2016), indicating complicated inter-
active effects of physiochemical processes in regulating τsoc. Therefore, acquiring high-precision data along the 
soil vertical profiles based on the specific sites is essential to improve the explanatory potential of carbon seques-
tration. Furthermore, more well-designed network experiments and site-specific times characteristic of carbon in 
plant organs and soil layers help upscale the site-specific research into global projection. Adding the vertical soil 
processes and their interactions with climate and vegetation factors is needed to improve the projections of the forest 
carbon cycle in the Earth system models (He et al., 2016; Koven et al., 2013; J. Wang et al., 2019; Wei et al., 2022).

5. Conclusion
By sampling soils from 12 forest plots, this study further detected a higher complexity of interaction between 
biotic and abiotic factors in driving the spatial variation of τsoc in the deep than surface soil layer. Based on an 
extensive data set, this study revealed a joint regulation of climate, vegetation, and soil factors on the spatial 
variation of soil carbon persistence on a global scale. Mineral protection by iron oxide is critical in explaining 
the positive correlation between forest stand age and deep soil carbon persistence. These findings call for more 
efforts on the mechanisms underlying the interactions of climate, vegetation, and soil factors in driving soil carbon 
persistence in global forests. This study also recommends more measurements of the carbon ages in different plant 
organs and soil layers on the ecosystem level. The global patterns of τsoc at different soil depths are useful to inform 
Earth system models, which incorporate forest vegetation dynamics and multiple soil layers and their interactions.
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